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Abstract—Model compression techniques allow to significantly
reduce the computational cost associated with data processing
by deep neural networks with only a minor decrease in average
accuracy. Simultaneously, reducing the model size may have a
large effect on noisy cases or objects belonging to less frequent
classes. It is a crucial problem from the perspective of the models’
safety, especially for object detection in the autonomous driving
setting, which is considered in this work.

It was shown in the paper that the sensitivity of compressed
models to different distortion types is nuanced, and some of the
corruptions are heavily impacted by the compression methods
(i.e., additive noise), while others (blur effect) are only slightly
affected. A common way to improve the robustness of models is to
use data augmentation, which was confirmed to positively affect
models’ robustness, also for highly compressed models. It was
further shown that while data imbalance methods brought only
a slight increase in accuracy for the baseline model (without com-
pression), the impact was more striking at higher compression
rates for the structured pruning. Finally, methods for handling
data imbalance brought a significant improvement of the pruned
models’ worst-detected class accuracy.

Index Terms—pruning, robustness, object detection, CNN,
class imbalance

I. INTRODUCTION

Optimization of the size of visual recognition models is
of great importance, for example, for autonomous driving, be-
cause of energy consumption, hardware cost, and size. Typical
methods to reduce the computation cost include deploying
specialized architectures [1], model compression techniques
such as reducing model precision (quantisation) [2] and/or
setting the number of weight or filters to zero (pruning) [3].
For example Han et. al showed [4], that it is possible to
reduce the size of the VGG network by a factor of 13 when
benchmarking on the ImageNet dataset [5] with no loss in
accuracy.

Another essential aspect for real-world deployment is the
models’ robustness. Many works have shown that current
machine learning models for visual recognition from RGB
images are vulnerable to tiny changes in the input image, such
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as adversarial examples [6], noisy input [7], [8] small trans-
formations of the input image [9], [10] or varying background
[11]. Yet, most of the works in model compression focus on
clean test-set accuracy ignoring model robustness, such as out-
of-distribution (0.0.d.) accuracy, which is crucial for systems
operating in the real world.

Model compression is also a very interesting problem
from a research perspective. It is well-known that current
machine learning models are heavily over-parameterized,
which allows them to easily fit random labels [12]. This
over-parameterization is exploited by compression techniques
which greatly reduce the model size with only a small decrease
in accuracy. But, investigating only the mean accuracy might
not give the full picture of compression methods’ impact
on model predictions. Highly accurate models (in terms of
average precision) can still fail in rare and atypical cases [13],
[14].

It was only recently shown that pruning significantly af-
fects robustness in the image classification task and might
disproportionately impact different object classes [15], [16].
In our work, we start with those observations and apply
them to the task of object detection from RGB images.
Further, we test the effect of naturalistic data augmentation on
compressed models. We focus on autonomous driving datasets,
as both model robustness and computational efficiency are of
great importance for such an application. It was demonstrated
that using test accuracy alone might not give the complete
picture of the model compression impact. Measuring out-of-
distribution performance or per-class accuracy is crucial in
safety-critical applications. The contribution of this paper are
as follows:

« First, both structured and unstructured compression tech-
niques are evaluated on object detection tasks. The further
effect of adding texture invariant data augmentation was
measured. It was shown that such an intervention has a
positive effect on model robustness, showing that highly
compressed models, in spite of their limited capacity, are
able to build more texture-invariant object representation.

o When evaluating model robustness on synthetic distribu-
tional shift (adding different types of distortions to the
images), it was shown that compressed models’ sensi-
tivity is remarkably varied between different distortion
types and some of them are only slightly affected by the



compression.

o It was shown that compression techniques have a dis-
proportionate impact on different classes. To reduce that
effect, several class-balancing techniques are evaluated
which significantly improve accuracy for many classes,
and also improve mean average precision. Noticeably, for
structured pruning, the positive effect of using methods
for handling data imbalance is the most striking at higher
compression rates.

II. RELATED WORK

Model compression. A significant number of methods have
been proposed for reducing the computational footprint of
neural networks by reducing the model size. The most popular
approach is magnitude pruning which removes a number of
small magnitude weights resulting in only a small decrease
in accuracy [4], [17]. However, in order to actually reduce
the computational cost of such pruned models, specialized
hardware is required which optimizes sparse operations. As
a result, structured pruning was proposed where entire filters
and/or layers are removed [18]-[20]. Standard approaches to
model compression assume training the base model, pruning
and then a fine-tuning stage [4] or gradually pruning the model
during training [17], [20]. For the task of visual recognition,
model compression has mostly been applied to the image clas-
sification, with very few works on the task of object detection
[21]. As object detection is a more complex task than image
classification, and also has significant application potential, it
is important to evaluate model compression methods in the
object detection task.

Robustness. Current CNN-based models show impressive
performance when the test data comes from a similar data
distribution to the training data, but fails to generalise when
this assumption does not hold [22], which is a significant
challenge when deploying machine learning models to the
real world. To improve model robustness, several methods
have been proposed. They include using data augmentation
techniques such as style-transfer [23], [24], noise injection
[25], naturalistic augmentation (color distortion, noise, and
blur) [26], and interpolating between different images [27].
It has also been shown that large models improve robustness
[7], [28], however our goal is orthogonal, we studied whether
small models can also be robust.

On the evaluation side, evaluating the models by adding
synthetic distortions during test time (e.g., noise, blur, changes
in contrast) [7], using test data coming from a different
distribution, and by testing models on natural transitions
(for example from day to nighttime images) [29] have been
proposed. Still, measuring the effect of compression on model
robustness remains an unstudied problem. It was shown that
it is possible to optimise for both adversarial robustness and
model size at the same time [30], [31]. A parallel work to
ours also investigates effects of model compression in out-of-
distribution setting and confirms that such testing is critical
in the context of safety-critical systems [32]. In our work, we
focus on the object detection task and measure its impact on

both synthetic and real distributional shifts, and additionally
on per-class accuracy.

Class imbalance. Real-world datasets often follow a long-
tail distribution: a few dominant classes are represented by
a great number of examples, significantly higher than of
other less represented classes. Models trained on such datasets
provide poor accuracy on the underrepresented classes [33].
Significant research exists on dealing with such data imbalance
which can be categorised into two groups: re-sampling and
cost-sensitive learning. In re-sampling strategies, some of the
training examples for the minority classes are repeated [34] or
examples from dominating classes are undersampled). Cost-
sensitive learning deals with the problem by assigning a
relatively higher cost to the minority classes, e.g., computing
the loss using the inverse of the class frequencies [35] or the
inverse of the effective number of samples [36].

At the same time, the effect of model compression tech-
niques on certain classes remains largely unexplored. Indeed,
a recent work suggests that some classes may be more
impacted by compression techniques than others [15]. As
such, we decided to evaluate the effect of model compression
techniques on different classes in the safety-sensitive domain
of autonomous driving.

III. METHODOLOGY
A. Object detection

A goal of object detection is to find where object are
located in the image (object localization) and to which class
they belong (object classification). Faster R-CNN [37] is a
popular algorithm in object detection that works in two stages:
regions of interest selection with Region Proposal Network
(RPN) is followed by a regions classification into one of the
classes ¢ € {1,...,C}. Both stages share a common set of
convolutional layers, a so-called a backbone network. RPN
outputs a list of anchors (bounding boxes) which are likely
to contain an object, and each region proposal is processed
by the classification layer, which computes a logit vector
z € R° for each region. Finally, a sigmoid function is
applied p = sigmoid(z), to obtain a list of predicted class
probabilities and class with the highest probability is used
as predicted class for given region proposal. Whole model is
trained by optimizing multi-task loss function which consists
of cross-entropy loss for classification task and L1 smooth loss
for bounding boxes localizations regression.

B. Model compression

In our work, standard magnitude pruning approaches were
utilized. While, more advanced approaches exist, magnitude
pruning has been shown to consistently achieve very good
results across a number of datasets and tasks [38]. Another
advantage is that magnitude pruning is a very general method
than can be applied to a wide range of tasks and architectures.
During training, the automatic gradual pruning technique is
used which progressively increases the sparsity in the network
over the course of the training up to the desired compression



Fig. 1: Examples of augmented images:
left image), color distortion (top right), overexposed image
(bottom left), gaussian noise (bottom right).
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rate. Specifically, the sparsity s; at epoch ¢ is computed as:
[17]

The repeat factor sampling (RFS) strategy was recently
shown to yield competitive results on class imbalance prob-
lems [40]. For each category c, let’s define f. as a portion of
images that contain at least one instance of object category c.
The category-level repeat factor is defined as:

(t/fe)) )

where ¢ is a hyperparameter. Intuitively, this means that
categories which frequency f. is below threshold ¢, will be
over-sampled. Then the image-level repeat factor is computed
as the maximum value over the categories in the image i:

re = max(l,
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Cost sensitive learning, on the other hand applies class-
specific weights w, to the cross entropy loss in the classifica-
tion task. For a given observation, the weighted cross entropy
can be computed as:

c
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5t = 3f+(5i_3f)*(1_m)3 for ¢ € {to,to+At, ..., to+nAttwhere . € {0,1} indicates whether class c is the correct class

ey
where n is the number of pruning steps, At is the pruning
frequency, sy is a final sparsity value, s; an initial sparsity
value (usually 0) and ¢( is an epoch at which pruning starts.
At each iteration L;—norm is computed for each tensor and
tensors with the lowest norm are zeroized, such that the desired
level of sparsity s; at given epoch is achieved. Similarly, for
structured pruning the L; —norm is computed at the filter level,
which weights are set to 0.

C. Data augmentation

Several data augmentation techniques have been proposed
to improve model robustness, in particular style-transfer data
augmentation is quite often used [23], [24], [29]. However,
the computation itself is quite costly and one has to decide
which data to use as the source of the style. On the contrary,
recent work has shown that adding simple data augmentation
such as color distortion, noise, and blur can also be a very
efficient strategy to improve model robustness [26]. As such a
procedure is very simple and very efficient, it was used in our
work. Namely, during training, the following augmentation is
used in the pipeline:

o Color distortion with a probability of 50%. This includes
changes in the brightness, contrast, saturation and hue of
the image as specified in [39].

o Color drop (grayscale image) with a probability of 20%.

o Gaussian blur with a probability of 50%.

o Gaussian noise with a probability of 50%.

D. Imbalanced data

In this subsection, a few techniques for handling data-
imbalance are described, the first technique being based on
sampling and the others based on cost-sensitive learning.

for given observation and g, is a predicted probability for class
¢, and w, is a weighting factor for every class. If w, =1 for
all classes then the above formulation relates to the standard
cross entropy loss. Below, different approaches to computing
w, for data imbalance problems are briefly described.

Inverse square root of class frequency computes the w, in
exactly the same way as the repeat factor r, was computed
for the RFS algorithm. For our experiments, another variant
was also tested where the weights were computed as w. =
v/ (t/f) (so removing the max function), which allowed the
weights of some frequent classes to be smaller than 1.

Computing class weights by means of a category-level
repeat factor, as defined above, may yield suboptimal results,
since some of the images may contain just one instance of a
given category, while others may contain dozens of them. As
such, it was proposed in [36] to compute the weighting factors
using the number of instances. Our implementation follows
the details provided in [41]. First, the number of instances for
each category NN, is computed. Then, the effective number
of samples E,, for each category c can be computed as:

Nc
g, =120
1-p
The final class weights are obtained by taking inverse of the
E,, and applying a normalisation term.

However, note that the above methods have mostly been
tested on the image classification task, and object detection
brings further challenges. First, object detection has a multi-
task objective and scaling classification loss may introduce
side effects to the overall performance (for example by
changing the accuracy of the regional proposal network).
Second, the above calculation does not take into account
the background class (because it is hard to estimate the
“frequency” of the background class, a class-weight of 1 is
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Fig. 2: Cityscapes dataset class histogram (logarithmic scale).

applied to the background class in all cases as in [41]). Since
foreground/background separation is also a very important
part of the object detection, one has to be very careful when
applying different class balancing methods. As such, in the
experiments section, experiments are also conducted with
linearly scaled variants of the above methods.

IV. EXPERIMENTS
A. Datasets

Cityscapes [42] is a large-scale autonomous driving dataset
for semantic segmentation and object detection (Fig. 2 shows
class histogram). It contains 5000 images of street scenes
recorded in 27 cities, mostly in Germany. However, a potential
limitation is the fact that the Cityscapes datasets were mostly
recorded during the daytime in good weather conditions. As
such, more challenging datasets are being developed. EuroC-
ity Persons (ECP) [43] contains 47,300 images recorded in
31 cities in 12 European countries. Additionally, data were
recorded during all seasons in different weather conditions. A
significant subset of images was recorded during the nighttime.
This allows us to evaluate model robustness on a day to
night transition (when the model was trained using daytime
images and evaluated at nighttime). Finally, Berkeley Deep
Drive (BDD) dataset [44] was used as it is one of the most
diverse datasets for object detection in autonomous driving.

However, even the biggest datasets cannot account for all
different conditions that may occur in the real world, e.g., bad
illumination conditions, adverse weather conditions, sensor
noise, or a mixture of these. As such, using simulated dis-
tortions is often used as an additional proxy to evaluate model
robustness. The common corruptions benchmark [7] is a great
example of such an approach, which contains procedures to
generate synthetic distortions, which are applied during model
evaluation. In total, 15 distortion types can be generated, which
are grouped into 4 categories: noise (Gaussian noise, shot
noise, impulse noise, salt-and-pepper noise), blur (defocus
blur, frosted glass blur, motion blur, zoom blur), weather

corruptions (snow, fog, brightness, contrast) and digital noise
(elastic transformations, pixelation, JPEG lossy compression).
Each corruption has 5 levels of intensity. For simplicity, in
our evaluation, distortions are applied at the medium intensity
level.

B. Implementation details

The models were trained using the Faster R-CNN general
purpose object detector. The Distiller package [45] was used
for pruning, using both structured and unstructured methods.
Similar to [23], [29], the Cityscapes model was trained for
64 epochs, with a learning rate step reduction by factor of 10
at epoch 48. Initial learning rate was 0.01 and the batch size
was 6 as this is the maximum that the GPU used is able to
concurrently process. The pruning used the automated gradual
pruning scheme [17] starting from the first epoch until epoch
56.

For ECP and BDD datasets the model was trained for 11
epochs, with a learning rate step reduction by factor of 10 at
epoch 7. Initial learning rate was 0.01 and the batch size was
also 6. The pruning was gradual starting from the first epoch
until epoch 8.

The models were pruned at 30%, 50%, and 70% compres-
sion rates for the structured pruning and at 50%, 80% and
95% compression rates for the unstructured pruning. For each
method, all of the compression rates can be considered to be a
reasonable setup, with the first compression rates being more
conservative and the last being more aggressive. Note, that
for the unstructured pruning, higher compression rates can be
achieved, which is why the compression rates were higher in
that setting. Above models were trained 5 times, and the mean
accuracy is reported.

C. Measuring impact of model compression on the robustness

Table I presents the results obtained for the models trained
on the Cityscapes dataset using different compression strate-
gies and evaluated on the clean Cityscapes dataset and its
corrupted versions. The results from the second to the last
column measure the robustness of the models (0.0.d. test).
The first thing that can be noticed is that the models clearly
lack robustness and is very vulnerable to different kinds of
distortions, as the mAP metric is very low for all distortion
types. Further, for the structured pruning, it was possible to
prune 30% of the filters and still achieve the same accuracy on
the clean dataset (first column), however models’ sensitivity
to different distortion types was already negatively affected.

While the previous experiment measured robustness to some
synthetically generated distortions, using the ECP dataset, one
can measure the robustness to natural distortion such as the
transition from day to night (Table II). Specifically, a model
trained on daytime images is evaluated on daytime images
(first column) and also on nighttime images (second column,
0.0.d. test). The decrease in mAP metric is comparable for both
tests, when compared to the baseline model, for both pruning
methods and for both evaluation (ECP-day and ECP-night).



TABLE I: Accuracy comparison for models trained with
different pruning strategies tested on the Cityscapes dataset
(first column) and different corruption types from the Common
Corruptions benchmark (the remaining columns).

Model Clean | Noise | Blur Weather | Digital
Baseline | 0.352 | 0.0 0.049 | 0.152 0.146
Unstructured pruning (compression rate)

50% 0.351 | 0.0 0.047 | 0.151 0.14
80% 0.338 | 0.0 0.041 | 0.138 0.135
95% 0.323 | 0.0 0.029 | 0.115 0.118
Structured pruning (compression rate)

30% 0.352 | 0.0 0.037 | 0.134 0.135
50% 0.337 | 0.0 0.027 | 0.105 0.131
70% 0.33 0.0 0.023 | 0.088 0.125

TABLE II: Accuracy comparison for models trained using
daytime and tested on daytime images (first column) and
nighttime images (second column).

Model name | ECP-day | ECP-night
Baseline 0.468 0.392
Unstructured pruning (compr. rate)
50% 0.462 0.396
80% 0.45 0.383
95% 0.414 0.331
Structured pruning (compr. rate)

30% 0.457 0.382
50% 0.444 0.363
70% 0.431 0.34

D. Naturalistic data augmentation

A standard way to improve model robustness is using
specialized data augmentation, it is however unclear what the
effect of such augmentation will be on compressed models,
especially at the highest compression rates. In this section,
the models’ robustness was again evaluated, but this time a
naturalistic data augmentation’ [26] was used during training.
The results are presented in Table III and Table IV. Overall,
one can see that, as expected, the out-of-distribution detection
accuracy has greatly increased for both datasets for all models.
For example, looking at the structurally pruned model at the
50% compression rate, one can see that the accuracy on the
distortions unseen during training has greatly increased (0.243
and 0.251 mAP for weather and digital distortions compared
to 0.105 and 0.131 mAP, respectively). Also, the accuracy
on the clean dataset (first column) has significantly increased
for all models, with the only exception of structurally pruned
model at the highest compression rate, where the accuracy has
slightly decreased. Interestingly, the effect of using naturalistic
data augmentation is smaller at the highest compression rates.

On the ECP dataset, the loss in accuracy on daytime images
was significant (0.15 and 0.13 at the highest compression
rates for unstructured and structured pruning, however this
might be because a similar decrease can be noticed for the
uncompressed model (decrease in mAP from 0.468 to 0.456).
This shows that one has to be careful when setting the
data augmentation parameters, probably using less aggressive
augmentation on the ECP dataset would improve the results
for daytime images. Nevertheless, the results for the nighttime

TABLE III: Accuracy comparison for models trained using
naturalistic data augmentation with different pruning strategies
tested on the Cityscapes dataset and corruption types from the
Common Corruptions benchmark, when using naturalistic data
augmentation. Values in brackets show accuracy change due
to the added augmentation.

Name Clean Noise | Blur Weather | Digital
Baseline | 0.367 (+0.015) | 0.194 | 0.126 | 0.258 0.271
Unstructured pruning (compr. rate)

50% 0.364 (+0.013) | 0.193 | 0.127 | 0.258 0.264
80% 0.359 (+0.021) | 0.18 0.125 | 0.255 0.256
95% 0.326 (+0.003) | 0.064 | 0.112 | 0.226 0.233
Structured pruning (compr. rate)

30% 0.36 (+0.008) 0.178 | 0.122 | 0.252 0.252
50% 0.352 (+0.015) | 0.154 | 0.122 | 0.243 0.251
70% 0.324 (-0.006) | 0.103 | 0.113 | 0.221 0.232

TABLE 1IV: Accuracy comparison for models trained us-
ing naturalistic data augmentation on daytime images and
tested on daytime images (first column) and nighttime images
(second column), when using naturalistic data augmentation.
Values in brackets show accuracy change due to the added
augmentation.

Model name | ECP-day ECP-night
Baseline 0.456 (-0.012) | 0.419 (+0.027)
Unstructured pruning (compr. rate)

50% 0.453 (-0.009) | 0.417 (+0.023)
80% 0.444 (-0.006) | 0.407 (+0.024)
95% 0.399 (-0.015) | 0.363 (+0.032)

Structured pruning (compr. rate)

30% 0.447 (-0.01) 0.407 (+0.025)
50% 0.433 (-0.011) | 0.393 (+0.03)
70% 0.418 (-0.013) | 0.381 (+0.041)

images greatly improved at all compression rates. For example,
for the model structurally pruned at the 50% compression rate,
after using naturalistic data augmentation, the mAP on the
nighttime images increased from 0.363 to 0.393. This shows
that, in spite of limited capacity, the compressed models were
still able to learn more texture-invariant representation of the
objects.

It is also worth looking at how the dynamics of change in ac-
curacy for specific corruptions are affected, as the compression
rate is increased (Fig. 3). A few, very interesting observations
can be made. First, the accuracy for each corruption type was
differently impacted by the pruning. The models’ sensitivity
to noise was the most heavily impacted by model pruning.
While the initial accuracy was fair (0.194 mAP without any
compression), the accuracy started to deteriorate very quickly
when more than 30% of the filters were pruned. On the other
hand, the accuracy for the blur distortions was almost flat,
being only slightly reduced at the highest compression rates.
Digital and weather distortions were similarly impacted by
model compression, comparably to the performance of the
original Cityscapes dataset. Relating the results to other work
[8], it is worth noting that different distortions had different
Fourier statistics. Some of them (i.e., shot and impulse noise)
were concentrated in the high-frequency components of the
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Fig. 3: Effect of structured pruning with different compression

rates (x axis) across different distortion types on a mAP metric,
for a model using naturalistic data augmentation.

image, while others (e.g., brightness, contrast) were concen-
trated in the low-frequency components. This might mean that
pruning the visual recognition changes the models’ sensitivity
to the high- and low-frequency components of the image.

E. Per class evaluation

In this section, instead of observing only the mean accuracy
of the model, a per-class accuracy is also examined to see
how different classes were impacted by the compression. It
is important, since observing effects of compression using
mean accuracy alone, may be insufficient [16]. In this section
the experiments were conducted on Cityscapes and BDD
datasets, as they provide ground-truth for many classes. It
is clear that different classes were disproportionately affected
by the compression techniques (Table V). Some classes were
heavily impacted by the compression (e.g., truck, train, bus)
while others were less affected (i.e, car). There are many
factors which influence the final impact. One of those is the
class imbalance (Fig. 2, i.e., car class is dominant in both
datasets), but some classes were also inherently harder than
others (because they were similar to other classes, occured
with high occlusion rates, or were hard to distinguish from
the background).

As some classes seems to be more impacted than others,
we have conducted experiments using methods for imbalanced
datasets, namely:

o Repeat factor sampling (RF'S)
o Inverse squared class frequency re-weighting with
(INV¢qp) and without (IN'V) setting the minimal weight
to be 1.0 (as described in sec. III-D)
« Effective number of samples (EN.S)
For the weighting methods, we also experimented with the
linear variants of the above methods using scaling factor
A € {0.5,1,2.} and results are reported for the best per-
forming scale.
Overall, very interesting results were obtained. The best per-
forming method utilized inverse class frequency re-weighting.
Interestingly, while the effect of data imbalance was relatively
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Fig. 4: Per class accuracy for models structurally pruned
at the 70% compression rate using different class-balancing
strategies.

small without any compression (mAP increased from 0.367 to
0.374 on Cityscapes, similarly on BDD, Table V), the effect
was much more striking at the highest compression rates,
for the structurally pruned models. At the 70% compression
rate level, the accuracy significantly increased from 0.324 to
0.343 on Cityscapes and from 0.228 to 0.246 on BDD dataset.
As a sanity check, models were also tested at the 75% and
80% compression rates, confirming those results - the overall
accuracy increased by around 0.02 mAP in both cases. For the
unstructured pruning, the above finding was not observed. It
might occur because structured pruning is a harder problem,
and in the case of model pruned with unstructured method, it
might be easier to accommodate for different classes.

Fig. 4 compares different data balancing methods on
Cityscapes dataset. It can be noticed that for some classes (i.e.,
train, truck), the accuracy greatly increased after data balanc-
ing was applied, while on others, the accuracy remained almost
the same. In general, all of the methods brought improvement
to the compressed model (i.e, for INV method train accuracy
increased from 0.1 to 0.184 and bus accuracy increased from
0.432 to 0.478). Recent work studied models performance
of the minority groups and show that the overparameterized
models seem to learn patterns that generalize well on the
majority groups, but do not work well on the underrepresented
classes [46]. Our work, on the other hand studies per class
accuracy on the real-world dataset in low-capacity models,
and showed that different data balancing methods can be very
effective (for structurally pruned models).

Fig. 5 shows some detection examples. In general, the
compressed model detects well visible objects in the image,
however, the occluded objects might not be detected (the first
column, missed motorcycle detection). Additionally, pruned
models are much more sensitive to the noise distortion and
might include more false-positive detections.



TABLE V: Per class accuracy of trained models. Aug stands for the naturalistic data augmentation and INV for the inverse
class frequency re-weighting method. For the unstructured pruning, using data balancing methods bring similar gain across
different compression rates, here only the accuracy at the highest compression rate is reported.

Name [ Person | Rider [ Car [ Truck | Bus [ Train | Motorcycle | Bicycle | mAP
Cityscapes

Baseline + aug 0.39 0.404 | 0.577 | 0.265 | 0.495 | 0.222 | 0.256 0.329 0.367
Baseline + aug + INV 0.39 0.407 | 0.576 | 0.283 | 0.512 | 0.229 | 0.263 0.332 0.374
Unstructured (95%) + aug 0.359 0.38 0.552 | 0.205 | 0.454 | 0.16 0.228 0.312 0.331
Unstructured (95%) + aug + INV | 0.354 0.378 | 0.546 | 0.221 0.466 | 0.186 | 0.233 0.31 0.337
Structured (30%) + aug 0.385 0.409 | 0.576 | 0.249 | 0.497 | 0.186 | 0.246 0.333 0.36
Structured (30%) + aug + INV 0.384 0.406 | 0.572 | 0.257 | 0.512 | 0.222 | 0.26 0.331 0.368
Structured (50%) + aug 0.378 0.402 | 0.57 0.251 | 0.473 | 0.176 | 0.236 0.332 0.352
Structured (50%) + aug + INV 0.379 0.399 | 0.567 | 0.256 | 0.502 | 0.214 | 0.245 0.331 0.362
Structured (70%) + aug 0.362 0.394 | 0.559 | 0.21 0432 | 0.1 0.221 0.314 0.324
Structured (70%) + aug + INV 0.36 0.389 | 0.555 | 0.233 | 0.478 | 0.184 | 0.233 0.314 0.343
BDD

Baseline + aug 0.318 0.256 | 0.408 | 0.392 | 0.417 | 0.0 0.218 0.221 0.279
Baseline + aug + INV 0.317 0.26 0.404 | 0.396 | 0.428 | 0.031 | 0.232 0.222 0.286
Structured (70%) + aug 0.266 0.193 | 0.388 | 0.322 | 0.339 | 0.0 0.150 0.163 0.228
Structured (70%) + aug + INV 0.276 0.222 | 0.389 | 0.35 0.369 | 0.0 0.179 0.185 0.246

No compression

Structured (70%)

Fig. 5: Detection samples for base model and the model structurally pruned at 70% compression rate. Detections on the original
Cityscapes dataset (first column), ECP dataset (second column) and noise distortion (third column).

V. CONCLUSIONS

In this paper, it was shown that, despite limited capacity,
compressed models could make effective use of naturalistic
data augmentation to learn more texture-invariant represen-
tations, which significantly increased model robustness to
synthetic distortions and day to night transition. It was found
that model compression differently affects models’ sensitivity
to different distortion types. Some of them, i.e., those concen-
trated in the high-frequency domain such as Gaussian noise,
were heavily affected by pruning techniques, while others (blur
distortions), were only slightly affected.

In particular, it was demonstrated that data balancing meth-
ods might be especially useful in structurally pruned neural
networks. Without any compression applied, using inverse
class frequency re-weighting increased the overall mAP by
0.007 (1.9% relative increase). On Cityscapes dataset, at the
70% compression rate, in the case of structured pruning, the

mAP increased by 0.019 (5.9% relative increase). Similar
results were obtained for the BDD dataset. Both sampling-
based methods (repeat factor sampling) and cost-sensitive
methods (i.e, inverse squared class frequency re-weighting)
turned out to be effective.

Overall, our work explores the relation between models’
robustness and the model compression techniques and provides
insights on improving both performance and computational
cost of deployed models. It was shown that for safety-critical
systems, testing compressed models in out-of-distribution set-
ting or measuring per class accuracy, is important to fully un-
derstand effects of model pruning. A natural extension of our
work would be extending our experiments with quantization
techniques, which are also used for reducing computational
cost of machine learning models. As a future work, it would
be also worth exploring effect of model compression on fine-
grained “subclasses”, similar as in [14].
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